Electron Spin Resonance Studies of Deuterated Borate Glasses Irradiated with Gamma Rays at Liquid Nitrogen Temperature

By Yasuo Nakai

(Received June 4, 1964)

The present investigation was undertaken with the expectation that paramagnetic absorption measurements would yield information regarding the hydrogen atoms produced in the radiolysis of B-O-H-O-B or H_2O in borate glass.

For the purpose of examining the effect of water or B-O-H-O-B in glass, borate glass, B_2O_3 , was deuterated. The deuterated B_2O_3 glass used was made from the melting of D_3BO_3 prepared by the hydrolysis of trimethyl borate with D_2O .

The infrared spectrum of the deuterated B_2O_3 glass is shown in Fig. 1. The components of the hydrogen and deuterium atoms in the glass seem to be H:D=1:1.

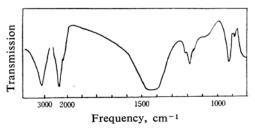


Fig. 1. The IR spectrum of deuterated borate glass.

The sample was irradiated at liquid nitrogen temperature with Co^{60} gamma rays $(1 \times 10^6 \text{ r})$. Derivative curves were obtained with a Varian 4501 ESR spectrometer at liquid nitrogen temperature employing a modulation frequency of 100 kc./sec.

The first derivative curve of the spectrum is shown in Fig. 2. The derivative peaks denoted by P₂, P₃, P₄ and P₅, and P_b (Bray's symbol) were found to be the same as have been reported previously.¹⁾ The observed

spectrum at $77^{\circ}K$ appears to display other new derivative peaks. The additional peaks will be denoted by H_1 and H_2 for the outer pair, and D_1 , D_2 and D_3 for the inner lines.

The paramagnetic resonance spectra of a free atomic hydrogen (S=1/2, I=1/2) would be expected to consist of a doublet with a



Fig. 2. The ESR spectrum obtained from γ ray irradiated $(1 \times 10^6 \text{ r})$ deuterated borate glass.

separation of 506 gauss, while those of a free atomic deuterium (S=1/2, I=1) would consist of a triplet with a separation of 156 gauss between outer components.²⁾

Therefore, H and D resonances seem to arise from the hydrogen atom center, H^0 of interstitial vacancy produced by the radiolysis of B-O-H-O-B or H_2O in glass. The derivative peaks denoted by D_1 , D_2 and D_3 cannot be observed in nondeutrated samples.

At room temperature, hydrogen atoms may diffuse to form hydrogen molecules or BOH. Thus, no paramagnetic resonance absorption due to H^0 and D^0 centers can be observed.

Central Research Laboratory Tokyo Shibaura Electric Co., Ltd. Kawasaki-shi, Kanagawa

¹⁾ Y. Nakai J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zasshi), 82, 1629 (1961); S. Lee and P. J. Bray, J. Chem. Phys., 39, 2863 (1963).

²⁾ P. Kusch, Phys. Rev., 100, 1188 (1955).